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The eledtrostartit stability properties of a rotating, charge-neutralized

P-layer are investigated within the framework of a hybrid (Vlasov-fluid)
model in which the layer 1lons are described by the Vlasov equation, and the
layer electrons and the uniform background plasma are described as macroscopic,

cold fluids. It is assumed that the P-layer is thin, with radial thickness

Ao

(2a) much smaller than the mean radius (Ro), and that v << 1, where v is

o

Budker's parameter for the layer ions. Electrostatic stability properties are

calculated for perturbations about a weakly diamagnetic P-layer with rectangular

density profileydescribed by the equilibrium distribution function

0_ \Q- 5 2
fb (ano/Zwmi)G[H-V ?? mi(V0 Vz)/Z]G(Pe—PO), where H is the energy, Py is

the canonical angular mdﬁéﬁﬁumﬂ Pz is the axial canonical momentum, and s
RO’ Vi, VO' and Po are constants. )The stability analysis is carried out
including the effects of a uniform background plasma, and weak self magnetic

fields. Although a slow rotational P-layer (P.>0) is fougg to be stable,

2 b

it is shown that a fast rotational P-layer (PJ < 0) is unstable for sufficiently

o~ ;
high background plasma density<(w§>>w The typical instability growth

et

rate 1s a substantial fraction of the ion cyclotron frequency.<:\mn~>
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I. INTRODUCTION

The generationl_6 and application7_9 of intense ion beams has been
the subject of scveral recent investigations. One application of con-
P
siderable interest is the formation of field-reversed ion layers and rings,

which can provide the magnetic confinement geometry for fusion plasmas.

Such layers and rings are likely subject to various macro- and micro- i
inst:abilit:ies.lo—16 For example, the low frequency stability properties ?
(lw[<<wci) of an ion layer immersed in a background plasma have recently

been investigated within the framework of a kinetic ehergy principle that

incorporates the effects of large ion orbits.ll In the present analysis,

allowing for perturbations of moderate frequency (lwlmwci), we examine

the equilibrium and negative-masslz_15

stability properties of a weakly
diamagnetic, charge-neutralized proton layer (P-layer) within the

framework of a hybrid (Vlasov-fluid) model. The layer electrons and
background plasma electrons and ions are described as macroscopic,

cold fluids immersed in a uniform axial magnetic field Bo%z' However, to
correctly include the influence of layer ion dynamics on stability behavior,
we adopt a fully kinetic model in which the layer ions are described

by the Vlasov equation.

The present analysis is carried out for an infinitely long P-layer

aligned parallel to a uniform magnetic field BOéz (Fig. 1). The P-layer

is immersed in a uniform, cylindrical background plasma and is charge neu-
tralized by extra electrons. We assume that the layer is thin [Eq. (1)1,
i.e., the radial thickness (2a) of the layer is small in comparison

with the mean radius R,.. It is also assumed that v<<1l, where v is

0
Budker's parameter for the layer ions. Although the equilibrium self

‘8 0g 24
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magnetic field Bge(r)ée+Bgz(r)éz is weak in absolute intenmsity for v<<1,
the self-field gradients can be sufficiently large to have an important
influence on particle trajectories, and hence on stability behavior.
Equilibrium and stability properties are calculated for the specific

choice of ion layer distribution function [Eq. (10)],

R m
0 "y 0 { .2 9
£ (H,P ,P) = ey S|H-V P, - 5= (Vo-V)| 6(R,-P) ,

where H is the energy, Pe is the canonical angular momentum, Pz is the
axial canonical momentum, and N, RO’ Vz, VO’ and Po are constants.
Equilibrium properties are examined in Sec. II. One of the important
features of the equilibrium analysis is that the equilibrium distribution

function in Eq. (10) corresponds to a sharp-boundary density profile

[Eq. (29)]. It is also found that the radial betatron frequency of the
layer ions is given by wr-(w§i+w§82)1/2, where Woyq is the ion cyclotron
frequency, wb is the ion layer plasma frequency, and B is the ratio

of the mean ion layer speed to the speed of light.

The electrostatic stability properties of the layer-plasma configuration
are investigated in Secs. III and IV, including the important influence of:
(a) equilibrium self magnetic fields, (b) an outer cylindrical conductor
(Fig. 1), and (c) ion layer kinetic effects. The analysis is carried out
within the framework of the linearized Vlasov-fluid and Poisson equations,
assuming that perturbed quantities are independent of axial coordinate
(3/52z=0) . Moreover, in Sec. IV, stability properties are investigated for
eigenfrequencies near multiples of the mean P-layer rotational frequency,

i.e., Iw-zme[<<mc , where w 1s the complex eigenfrequency, % is the

i

azimuthal harmonic number and wy is the mean rotational frequency of the

P-layer. Although a slow rotational equilibrium (P0>0) is stable [see

discussion following Eq. (55)], it is shown in Sec. IV that a fast rotational
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equilibrium (P0<0) is unstable for sufficiently high background plasma

2 .
density (m§>>wci). The physical mechanism for instability is similar to that

for the negative-mass inst:abil:[t;y,lz-15 including the dielectric

effects of the background plasma. Introducing the dimensionless parameters

[Eq. (60)]
n w2

ot 3 b “ei L

y=(2"-1) ——np 5 Qw8 /“’ci’

€

B

where n and np are the layer density and plasma density, respectively,

we find that [Eqs. (62) and (63)]
y<l, and (I+q)y°-(3q/2+1)y+q>0 ,

are necessary and sufficient conditions for instability. The instability
condition in Eq. (62) is valid only when the parameter nb/np is sufficiently

small (nb/np<< 1). Moreover, the system is most unstable when [Eq. (65)]
(n, /n_)=(1+q)/ (8%-1)
b/ Tp q ’

which corresponds to y=1. Evidently, the mean motion of the ion layer
(62), the background plasma (np), and equilibrium self field effects (q),
all have an important influence on stability behavior (Sec. IV).

Numerical investigations of the stability properties are carried out
in Sec. IV. Several points are noteworthy in this regard. First, the in-
stability growth rate increases when the self-field strength (as measured
by q) is increased. Moreover, the system is stabilized as q approaches'zero.
Second, the maximum growth rate can be a substantial fraction of the ion
cyclotron frequency. Third, the number of unstable modes increase rapidly
as q increases. Fourth, the range of nb/np corresponding to instability
is rapidly reduced when the azimuthal harmonic number £ is increased above

2=2. [The fundamental mode (2=1) is found to be stable.]




I1. THEORETICAL MODEL AND EQUILIBRIUM PROPERTIES

A. Theoretical Model

As illustrated in Fig. 1, the equilibrium configuration consists
of a nonrelativistic P-layer that is infinite in axial extent and aligned
parallel to a unitorm applied magnetic field Boéz' The P-layer is immersed
in a uniform, cvlindrical background plasma (with outer radius Rc)’ and is
charge neutralized by extra electrons with density profile identical
to the layer ions. The mean radius and radial thickness of the P-layer are
denoted by RO and la, respectively. The radius of the cylindrical conducting
wall is denoted by Rc' The mean motion of the P-layer is in the azimuthal
and axial directions, and the applied magnetic field provides radial confine-
ment of the layer ions. For simplicity, we assume that the plasma and layer
ions are singly charged. As shown in Fig. 1, cylindrical polar coordinates
(r,8,z) are introduced, and the following are the main assumptions pertaining
to the equilibrium contiguration:

(a) Equilibrium properties are independent of z (3/32=0) and azimuthally

symmetric (0/06=0) about the z-axis.
(b) The radial thickness of the P-layer is much smailer than its major

radius, i.e.,
a << R . (i)
(¢) It is further assumed that
=N 2/ " 1 (2)
v=N e"/m.c” <<

where'\)=Nbe2/mic2 is Budker's parameter,

Rc 0
szzn! dr r nb(r) (3)
0

is the number of laver icns per unit axial length of the P-layer, ng(r)
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is the layer ion density, c is the speed of light in vacuo, and e and my
are charge and mass, respectively, of a layer ion. The inequality in Eq.
(2) implies that the intensity of the self magnetic field is much less than
the applied field BO (i.e., ABO/BO<<1). However, the self-field gradients
over the narrow radial dimension of the layer can be sufficiently strong
to have a large influence on the layer ion trajectories, and hence on
stability behavior (Sec. III.A).

In the present analysis, the layer electrons and
background plasma are treated as cold (Tj+0) fluids immersed in a uniform

axial magnetic field B Here, j=e', e, and i represent the layer

ofz*
electrons, plasma electrons, and plasma ions, respectively. Within the
context of the electrostatic approximation (ZXE=O). the equation

of motion and the continuity equation for each fluid component (j=€,=2,i)

can be expressed as

; V. <B oK
L ppoaily, =l oy 200
(3t+¥j Z)L’j-mj<v¢+ = )) (4)

ﬁ“j"’y,' (“qu,j)=0 ) (5)

where E(x,t)=-V¢(x,t) is the electric field, nj(ﬁ,t) is the density, Xj({,t)

is the mean velocity, and e, and m, are the charge and mass, respectively,

] 3

of a particle of species j. In Eq. (4), the electrostatic analysis 1is
consistent to the low beta approximation.

To include the influence of layer ion dynamics on stability behavior,
we adopt a fully kinetic model in which the ion layer distribution

function fb(é’X’t) evolves according to the Vlasov equation

3 +v--§—+e—(-V¢+

3 r‘\’,x?o%)) M
ot Y a')\(l m{

o 'SEJ fb(¥,¥,t)=0 . (6)
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In Eqs. (4)-(6), the electrostatic potential ¢(¥,t) is determined self-

consistently from Poisson's equation

22¢=—4ﬂ[eJde fb + 5 'z ejnj (E) t)J . (7)
j=e,e,1

Equations (4)-(7) constitute a closed description of the system and form

the theoretical basis for the subsequent analysis.

B. Equilibrium Properties

For azimuthally symmetric equilibrium profiles characterized by

0 0 0 - . i e .
nj(r) and Xj(¥)=vj6(r)$e’ j=e,e,i, it is straightforward to show from Eq. (5)
that the functional form of the electron layer and background plasma density

profiles n?(r) can be specified arbitrarily. Moreover, from equilibrium

charge neutrality, the equilibrium radial electric field vanishes, i.e.,
Eg(r)=-a¢0(r)/8r=0. It follows from Eq. (4) that equilibrium force balance

in the radial direction can be expressed as

wj(wj+e w_j)=0 P (8)

jc

0

where ej=sgne , and mj(r)=Vje(r)/r and wcj=eBo/mjc are the angular velocity

h|
and cyclotron frequency, respectively. 1In obtaining Eq. (8), we have
approximated §0(§)=Boéz consistent with Eq. (2). In general we note

from Eq. (8) that there are two allowed equilibrium values of mj(r). Throughout

the subsequent analysis we assume that the layer electrons and background

plasma components are rotating in the slow rotational mode with
wj(r)=0 , j=e,e,i . 9)

For the layer ions, any distribution function fg(x,x) that is a function
only of the single-particle constants of the motion in the equilibrium
fields is a solution to the steady-state (3/5t=0) ion Vlasov equation.

For present purpose, we assume an ion layer equilibrium described by




n, R m
0 2 rshel) » SRt
fb(H,Pz,Pe) = 2nm1 6[H Vsz 5 (VO-VZ)JG(PB-PO), (10)

where Vz and V0 are constants, n, is the layer density at the equilibrium

radius r=R H is the total energy,

O’
ek 222
H = T‘“i (p *pg*p)) (11)
Pe is the canonical angular momentum,
et e ,s
g " r[pe s DR (12)

and Pz is the axial canonical momentum,

- e 8 ~
P =p = Az(r) ; (13)

Here, A:(r) and Az(r) are the 6- and z-components of vector potential for
the axial and azimuthal self magnetic fields. Without loss of generality,
we assume that the vector potentials Ag(r) and Az(r) vanish at r=R0.
In Eqs. (11)-(13), lower case p=m, v denotes mechanical momentum.

For the choice of ion distribution function in Eq. (10), the equilibrium
vector potentials are to be calculated self-consistently from the steady-

state Maxwell equations. The §- and z-components of the XXQg(%) Maxwelli

equation can be expressed as

9 13 s _ 4me O 0
B rAe(r) e nb(r)Ve(r)
_ il 8 0
- - aze J ap v, £ WP LB)
(14)
13 3_ ,s _ _b4ne O 0
ror & ar A () = c nb(r)Vz(r)

_ _ bne 3 0
= ———J d’p v, £, (H,P,,P) ,

where the local ion layer density ng(r) is defined by




ng(r)=Jd3p fg(H,PZ,Pe) 1 (15)

0 0
Here, v8=pe/mi, vz=pz/mi, and Ve(r) and Vz(r) are the mean azimuthal
and axial velocities of an ion layer fluid element.
Substituting Eq. (10) into Eq. (15) and representing jd3p=2nf dpef dp,p,»
: =2 0
where pf=pg+(pz—mivz)2, we find that the ion layer density profile is given

by

0, : r<R1 3
0 - 0
nb(r) nb';f , R <I<R, , (16)
o, R2<r<RC 5

where R1 and R2 are the extremee of the interval on which the inequality

¥(r)>0 (17)

is satisfied. [That is, R, and R2 are determined from w(Rl)=w(R2)=0.]

il
In Eq. (17), the envelope function Y(r) is defined by

B s s
2

s e ,s _ e s
Y(r) = 5 \Y : B0 Ae(r)J +-€ VzAz(r) : (18)

ci

It is evident from Egs. (10) and (18) that

m,

1 2
L Vsz = (VO_Vz

1 2 2
= 5;; [Pr+(Pz-min) 1-v(x)

for P9=P0° That is, y(r) is the (r-z) kinetic energy of a layer ion

in a frame of reference moving with axial velocity VZ.

Thus far, RO has been introduced in the analysis as an unspecified

constant parameter in Eq. (10). Without loss of generality, we now choose

BRIy i

s e bt
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RO to correspond to that radius where y(r) passes through a maximum in the

interval R, <r<R

1 g o€,

r=R0

Substituting Eq. (18) into Eq. (19), and making use of EZ(E)=B86éO+B§zéz=

*(Blar)Ai(r)ée+(l/r)(B/Br){rAg(r)]éz, we obtain

2 s s
we+{wci+[eBOZ(Ro)/mic]}me—VzeBoe(Ro)/micRo—O s (20)

where we=Vg(R0)/R0 is the angular velocity of an ion layer fluid element at

+

r=R0. Solving Eq. (20) for Wy gives We=wg s where
I
We==W 4 (21)

corresponding to a fast rotational equilibrium with

1 2

P0 = = E-miROwci<O ; (22)

Similarly,
= s

we=V_Boo (R /RyBys (23)

corresponding to a slow rotational equilibrium with
=1 g?
P0 =5 miROmci>O g (24)

In obtaining Eqs. (21) and (23), use has been made of Eq. (2), which implies
weak self fields with ]B:|, iB:|<<BO. Note that there are two classes of
equilibria [Eqs. (21)-(24)], namely, a fast rotational equilibrium with

P0<0, and a slow rotational equilibrium with PO>0.

A closed analytic determination of R1 and R2

is not generally tractable except for a thin layer [Eq. (1)]. We now spec-

from the zeros of Eq. (18)
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jalize to the case of a thin P-layer with (Rz—Rl)/RO<<1 and Taylor expand

Eq. (18) about r=R0. s

e(r) = %-mi[v - (P /m Ry-w,, 4R /Z) ]~-— mw (r R ) + (25)
where

g g (3% % . 27
s F( 2) =t B (26)
or
=R
: 13-15

is the radial betatron frequency-squared of a layer ion. In Eq. (26)

w§=4ne2n /m.c is the ion plasma frequency-squared, and 82 is defined by
2
~V (RO)/ +V /c —(P /m R e-w, RO/2®2+V§/CZ. It is important to

recognize that the term mbB in Eq. (26) is directly related to the self-

field gradients at r=R0. In particular, making use of Eq. (14), it is

straightforward to show that mzez can be expressed as
v (28, (L L o8 i
“y Yoi 232 l or r dr 06)

“v°0

Defining the half thickness of the P-layer by

a=[Vg-(Bo/mRo-v_Ro/ 71 20, (27)

and substituting Eq. (25) into Eq. (17), we readily find R1=Ro—a and R2=
R0+a, where a is defined in Eq. (27). Finally, we evaluate the angular

velocity w,. [Eq. (23)] for a slow rotational equilibrium. Making use of

6
Eq. (14) to eliminate B (R ), we obtain from Eq. (23)

w—=vwci(VZ/Rowci) 5 (28)

6

where v=Nbe2/m,c2 is Budker's parameter defined in Eq. (2), and Nb=4ﬂn R.a
i

b0

is the number of layer ions per unit axial length.

RN e At 2 2
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For a thin layer, the ion density profile in Eq. (16) can be approximated

n, |r-Ryj<a,
ng(r)= (29)

0, |r—R0|>a .
Assuming a space-charge neutralized layer, the layer electron density profile
qg(r) is identical to Eq. (29). Moreover, the background plasma has a

uniform density profile with q
no(r)=n O<r<R (30)
3 p’ c?

where np is constant. We now investigate electrostatic stability properties

for perturbations about the plasma-layer equilibrium characterized by

Egqs. (9), (10), (25), (29), and (30).
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ITI. ELECTROSTATIC STABILITY PROPERTIES

A. Eigenvalue Equation

In this section, we linearize Eqs. (4)-(7) assuming electrostatic
perturbation about the equilibrium described by Eqs. (9), (10), (25), (29),
and (30). The present analysis assumes flute perturbations with 3/92z=0, .
so that all perturbations have spatial dependence only on the perpendicular

variable %l=(r,6). In the electrostatic approximation, the perturbed

electric field is Gg(z,t)=—vlﬁ¢(§,t), and Eqs. (4)-(7) can be linearized ;
to give ‘
n0

3. L il -

JE Snpt pag (EnoVe )k ot e V™0

3 %3

3t Vyr 7 55956 T T m; ot B8 (4l

2 %15

'é‘gﬁvje+€jwcjsvjr=—mj?'a—e' 8¢ ,

for the layer electrons and plasma electrons and ions (j=€,e,i), and

¥*Bo&)

3 3 0 : é_}
{33:—+ v a—k-s:+ el B () +— ] 5% 6f, (x:851)
(32)
ol 80031 © 2= %, .p)
—e[ & ¢ 61) dB b &1)2.
for the layer ions (j=b). 1In obtaining Eq. (31), we have approximated .
E0(§)=Boéz consistent with Eq. (2). The linearized Poisson equation is v
13 ] 1 32 3 z
b -—-+-—*-~—> §¢ = —An(efd pSf. + e, bn,) , (33)
r dr ar r2 ae2 b jue' e, 1 SR

where use has been made of Eq. (9). In Egs. (31)-(33), ij(ﬁl,t) and
an(kl’t) are the perturbed fluid velocity and density, éfb(ﬁl’a't) is

the perturbed ion layer distribution function, and @0(§) =—(3¢0/3r)%r=0

is the equilibrium radial electric field.
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To simplify the right-hand side of Eq. (32), use is made of BPe/ae=
rée and BU/83=¥—Vz$z, where U=H-VZPZ. Here ée and éz are unit vectors in

the 9 and z directions, respectively. We express perturbed quantities as
8V (k15 ) =¥, () expli(26-wt)}, Imw>0, (34)

in Eq. (32), and integrate from t'=-» to t'=t, using the method of
characteristics. In Eq. (34), w is the complex eigenfrequency, and £ is
the azimuthal harmonic number. Neglecting initial perturbations,
and noting that afg/au and afg/ape are constant (independent of t') along
particle trajectories in the equilibrium field configuration, the perturbed
ion distribution function can be expressed as

; 3, 30 e

fbg(r’R) = e — ¢2(r) + ie(w — + 2 —)I . (35)

oU U BPe

where the orbit integral I is defined by
0 -
1=[ dr 9, (r')exp[-lur+in(6'-0)] . (36)

Here t=t'-t, and the particle trajectories ﬁ'(t') and x'(t') satisfy
dg'/dt'=¥’ and midx'/dt'=e¥'XE0(¥')/c, with "initial" conditions §'(t'=t)-§
and y'(t'=t)=y.

The evaluation of the orbit integral in Eq. (36) is generally complicated.
However, for present purposes, we consider low-frequency perturbations

satisfying

|w-2mJ2<<mi s
(37)

ILa/RO<<mr/mCi "

where a is the half-thickness of the layer defined in Eq. (27). Within

15
the context of Eq. (37), it is valid to approximate

2an
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8P w 3&
Elerie _870 _J)
$, 57 )=4, (Rp) * =5 z(ar e
Owr t‘—RO
(38)
uGPe
0' =6+ (w = >T »
¢} RZ
0
i ¥ D = -
in Eq. (36). In Eq. (38), dle Pe PO’ and
=2P /mR2=I
Yo 0N Yeg *
(39)
. s e e
u-‘wC/wr =-w, B /wr s

where w, is the radial betatron frequency defined in Eq. (26), (;)

refers to fast and slow rotational equilibria, and w, is the angular

6]
velocity of an ion layer tluid element at r=Ro[we=w;=—wc1 for a fast

T e ' i - 2
rotational equilibrium, and me—me--vwci(VZ/Romci) for a slow rotational
equilibrium, c.f., Egs. (21) and (28)]. Substituting Eq. (38) into
Eq. (36), and approximating (ve/r)Pe=Po=we-wo(r—R0)/RO, Eq. (35) can

be expressed as

p afg p Y Rug(t-Rg)
fbg(r’g) =e sy ¢2(r)~¢£(RO) - szzagjﬁa ¢£(R0)]
0 25 o (49)
Rt e
mPJ(n—Kma) Ro(m Lme) w2 or =R
r 0
We further assume that the ion layer density satisfies
n, <n (€30

b p

which will assure the validity of Eq. (37) in the subsequent analysis.

To simplify notation, we also introduce the dielectric function

of the hackground plasma
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2 2
wPe w
e(w) =1 -5 7 ,
_wCe -le
2 2 w2
w w
Retuit nelmll | ShEa
ce cl W=y

cl

where use has been made of Eq. (37), and m§=4ne2np/mi is the background

ion plasma frequency-squared. Substituting Eqs. (34) and (40) into
Eqs. (31)-(33), and making use of Egs. (37) and (42), it is straight-

forward to express the eigenvalue equation as
2 ~ w2
~ ;“ &
L3 bt Mr)J -l o) = BB D [5r )-s(rR,)]
r 3r dr r2 roww 2 1

2
L0 r-R §(r-R,)
0 b Yo “ 0 0 ° 1
+ :;'—E'{[¢(r)-¢(R0)] = z;:;;gy —ﬁa— ¢(R0)} {"':;———

(43)

2 2
Ro(w—lwe)

24
) R ul ¢ (R,.)
+— 2 } ¥ wf) ,rQ Q[(Rz—r)(r—Rl)]l——O———

2w

(o (38 3
2 \ dr (w=2w,.) 2
Rowr RO 0

where w§=4ne2nb/mi, ¢(r)§$2(r), and ®(x) is the Heaviside step function

defined by

I x>0 .

8(x)= (44)
o, x<0 .

In obtaining Eq. (43), we have neglected the additional electron layer contribu-
tion, -wie,(r)/[mz-mie.(r)], to the dielectric function ¢(w) on the left-hand
side of Eq. (43). For the low frequencies considered here, the corresponding
term is of order (nb/np)(me/mi) smaller than the plasma ion contribution to e(w).

It should be noted that the terms in Eq. (43) proportional to G(r—Rl)

and d(r-Rz) correspond to surface-charge perturbations on the inner and

outer boundaries of the P-layer. These terms have a decisive influence on

stability behavior when mi/mii>>l. We further note that the final term

e

g — — POR—




on the right-hand side of Eq. (43) is proportional to 0[(R2-r)(r-R1)] and
corresponds to a body-charge perturbation. The general form of Eq. (43)
is similar to the eigenvalue equation obtained by Davidson et 31.15 for a
nonrelativistic E-layer, and similar techniques can be used to determine

the complex eigenfrequency w.

B. Dispersion Relation

We now investigate the stability properties predicted by Eq. (43).
Since the surface terms in Eq. (43) are nonzero only at the boundaries

of the P-layer, the perturbed potential at all other radial points satisfies |

0 ) 0<r<R1 :
T W bR o R (3$/3T)p- '
La .8 _ X;.)¢(r) N LS 0 R,<r<R
r dr or 2 eR.r 2 2 (w=2w,.) | 202
r 0 (w-2w,.) w 6
0 T
08, R2<r<Rc 3 E
(45) i

where R1=R0-a and R2=R0+a are the boundaries of the P-layer.

the physically acceptable solution to Eq. (45) is

For 2>2,

where A, B, C, D, and E are constants.

can be expressed as

For %=1, the solution to Eq. (45)

(A'r s 0<r<R1 ’
- o1 1 “’13 r [MORY mORO(M/ar)Ro
$(r) = § B'riC'r ~ + 3 — = 5 - 7 » Ry<r<R, ,
0 (w-me) W (w—me)
(] Vg
LD r+E'r R <r<R
2 c

[ Ax® % O<r<R, ,
5. .
: g mz/s ue ¢(R.) 2m0R0(3¢/3r)R
v A -2 b 0 0
¢(r) = J Br +cr glo vl =k o 5 = 5 3 R1<r<R2 5
2°=-1 70 (m—lme) wr(w—lwe)
kDrQ+Er-l 4 R2<r<Rc 5




'

where A', B

, C', D', and E' are constants. Since Eq. (43) is
similar in general form to Eq. (88) of Ref. 15, we briefly outline
the derivation of the dispersion relation. [The detailed procedure
is similar to Ref. 15.]

We introduce the abbreviated notation

2
R, w
0 b
Belu) = o= =7
w
r
2
w Lw
b 0
S ((A)) B e e
2 wze (w Qwe)
T
’ lwi
S3(w) e . (46)
ci
2 mz/e
2 b
Nl(m) = s 5
2°-1 (m—zwe)
(wz/e)lm
Bl =~ 1 b 0
2 2

2
2°-1 wr(w—lme)

Three constraints relating the constants A, B, C, D, and E (or A',
B', C', D', and E') are obtained from the boundary condition

$(r=Rc)=0, and by enforcing continuity of é(r) at r=R1 and r=R2.

The remaining two constraints are obtained by integrating Eq. (43)

across the layer boundaries at r=R, and at r=R,. After some tedious

1
algebra, we obtain the dispersion relation
: R, 27 R 22
49, gf+22(sl+s3)+21(sl—s3) <§;> + (2zgf+sl+s3)(sl—s3)[1 -( > ]
Rl L RO 4
X(1+N1+N2)+(2!Lgf+81+53)(Xl—x 3) (ﬁ(;) = (20481-85) (xytx,) (R—>

Nl 18

N

RZ\

1 RiRy
+(51'S3) (XZ-XA) R_oiz_ = [21(gf-1)+(51+s3) (xl+x3)] (—R-2—>
2
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L
Rl) Ry R
+2!LN2 (i: (—0—) (1-2—sl+s3)(s]—sz)+ (—O) (1—2+21gf+Sl+S3)(Sl+52) =0,
47
for £>2. In Eq. (47), xj(w) is defined by
R1
xl(w) = i(; (l—R.—Sl+S3)N1—(Sl+SZ)(l+N2) .
¥
xz(w) = % (1—2+22gf+sl+33)N1+(Sl—82)(1+N2) 5
(48)
fR]
x3(w)= Tz; (1—sz,-sl+s3)+sl+s2 QNZ :
’Rz
x4(w)= R—O (1—sz+212,gf+sl+s3)-sl+s2 2N2 i
and the geometric factor 8¢ is defined by
2 -1
g8e=[1-(R,/R)™] ™ . (49)

Equation (47) is the desired dispersion relation for £>2. Keep in mind
that 2<<Ro/a has been assumed in deriving Eq. (47) [see Eq. (37)].
Substituting R1=Ro-a and R2=R0+a, and Taylor expanding the left-hand
side of Eq. (47), for a<<R0, we find that the dispersion relation can

be approximated by

2 2
2- Y 4 “b  fa
le +F2 :‘E R—O x+T > R—O =0, (50)
% EW 4
where
x=(w-2m9)/wCi (51)

is the normalized Doppler-shifted eigenfrequency, Fj is defined by




w2 w2 2
b 2 b a
) (gg)=ge 1L+ —5 | +5| —5 ) 3
€W EW 0
T r
2N ¢ g 2
(L)b w. wb
rz(gf ’w)_ 2 + ._2' —Q(gf'l) + T '} il 7 (52)
ew, ci 2ew
" o gopaisieg
0 2 b ol e Ce b T s D
Palwdmpll + 5 =S+ 57 1- 5| —3*353 )
cEw € W w ew E W
r r r r 3 &

and (+) refers to fast and slow rotational equilibria. In obtaining
Eq. (50), use has been made of the definitions in Eqs. (39), (46), and
(48).

The preceding analysis pertains to 2>2. A similar procedure can be
followed to obtain the dispersion relation for 2=1. After some algebraic
manipulation, it is straightforward to show in the thin-layer approximation
that the dispersion relation in Eq. (50) is also valid for 2=1. In this
context, Eq. (50) is the desired dispersion relation, which determines

the electrostatic stability properties for lf£<<R0/a.
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IV. STABILITY ANALYSIS

We now investigate the stability properties predicted by Eqs. (50)-
(52). The stability analysis for a slow rotational equilibrium
proceeds in the following manner. Since the angular velocity of an ion
layer fluid element for a slow rotational equilibrium is much less

than the ion cyclotron frequency, i.e.,

= 2
u’6-\)(“czi(VZ/ROmci) <<wci ’

it is readily shown from Eq. (42) that the background plasma dielectric

function can be approximated by
e ) =1+ (14w /v )(wz/w2 )>0 (53)
] ci’ce’ VT p eci &
Substituting Eq. (53) into Eq. (52), yields the inequalities
T;(8gs2uwg)>0, T3(hwg)<0 . (54)

Within the context of Egs. (50), (53), and (54), it is straightforward
to show that the system is stable for a slow rotational equilibrium.
The stability analysis for a fast rotational P-layer is generally

more complicated. We therefore restrict the analysis to

mf)»wii ) (55)

Making use of npinb in Eq. (41), it is straightforward to show that

- |<1.

2.2
|wbr2/£rlr3cwci <

In this context, the dispersion relation can be approximated by

2
2 “b fa _
le +T3 - 0 (56)
Ew 0

ci




where the term proportional to x has been neglected. Moreover,
making use of the inequality in Eq. (37) the dielectric function in
Eq. (42) can be approximated by

2 (x?'--Zx)"1 . =1 ,

o tabe B (57)
ci [x2—2£x+(22-1)]—l, 2>2 ,

+
where x—(m—ﬁwe)/mci—(w+lwci)/mci.
A general numerical analysis of Egs. (56) and (57) is summarized

later in this section. However, for eigenfrequencies satisfying

|w+£wci|<< Wy o (58)
Eq. (57) can be further simplified to give
T Lo . =1 ,
e (w)=- (—11-) (59)
i 2 ol
(R==1) ~ , =2
and the solution to Eq. (56) is analytically tractable. Defining
y= (%<1 (n /) o Jw )P
b p’ el g
(60)
2 2 2 2.2, 2
cal T L e L LT
Eq. (56) can be expressed as
R 29
(l-y)x2 +22 1 - _JQ) ¥ (q+1)y2-(2 q+1>y+q s (61)
R0 RC 2

for 9>2. Here, q is a measure of the strength of the self-field

gradients at r=R [See expression for mgﬁz following Eq. (26).]

0
In obtaining Eq. (61), use has been made of Egs. (1), (26), (39),

(49), and (59). Note from Eq. (60) that y is positive for 2>2.
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A parallel analysis for %=1 results in a dispersion relation with
stable solutions in the parameter regime of physical interest. We
therefore restrict discussion to mode numbers 2>2.

We note from Eq. (61) that (q+1)y2—(3q/2+l)y+qzq/2 for y>1.
Therefore, the necessary and sufficient conditions for instability can

be expressed as

y<l (62)
and

(1+q)y2-(% q+l>y+q>0 , (63)

for 2>2 and |w+2wci]<< woye It is straightforward to show that Eq.

(63) is automatically satisfied for
gmo28?/u? >2(23/%-1) 17=0. 52. (64)

For the case ¢>0.52, the necessary and sufficient condition for
instability is given by y<l in Eq. (62). It should be noted from Egs.
(62) and (63) that the stability criteria are independent of the location
of the conducting wall. Moreover, the system is stable when the self
field is negligibly small, i.e., g<<l. Finally, we note that the maximum

growth rate occurs at the resonant value

(ny/n)=(L+q)/(2°-1) (65)

corresponding to y=1.

Removing the restriction in Eq. (58), the dispersion relation in
Eq. (56) has been solved numerically by substituting Eq. (57) into
Eq. (56). Figure 2 shows a plot of the normalized growth rate Imm/mci=mi/mCi

versus nb/np for 2=2, a/R0=0.05, RO/RC=0'5’ and several values
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of q. Several points are noteworthy in Fig. 2. First, the instability
growth rate is considerably increased when the strength of the self
magnetic field (as measured by q) is increased. For example, the
maximum growth rate (wi)m=0.ll4 0.4 for g=0.5 occurs at nb/np=0.63,

while the maximum growth rate (mi)m=0.25 w for q=2 occurs at nb/np=

ci
0.65. We also note that the value of nb/np corresponding to maximum
growth increases as the self magnetic field is increased [see also
Eq. (65)]. Second, the maximum growth rate can be a substantial

fraction of the ion cyclotron frequency w, Third, even for weak

i

: self-field effects (q<l), the range of nb/np corresponding to instability
is considerably extended beyond the range of nb/np predicted by Eq. (62).
For example, for ¢=0.5, Eq. (62) predicts that instability occurs only

for nb/nPEO.S. On the other hand, from Fig. 2, we note that the

system is unstable for values of nb/np up to nb/np=1.6. However, the

absolute maximum growth rate does occur very near to the resonant value

of nb/np (for example, nb/np=0.5, for q=0.5) [Eq. (65)]. Fourth, the growth
rate curve has more than one maximum for q<0.52, which is predicted by
Eq. (63). [See the curves corresponding to q=0.25 and q=0.5 in Fig. 2.]
We also emphasize that the range of nb/np corresponding to instebility
is rapidly reduced when the azimuthal harmonic number £ is increased.
Of considerable interest for experimental application is the
stability behavior for specified values of nb/np. q. and RO/RC'

Typical results are shown in Fig. 3 where Imm/wc is plotted versus

i
mode number £ for nb/np=0.1, a/RO=0.05, RO/Rc=0'5’ and several values of q.
From Fig. 3, we note that the number of unstable modes increases as

the self-field strength (as measured by q) is increased. For example,

for q=2, the mode numbers from #=2 to 2=7 are unstable. On the other

hand, for q=0.25, only the 2=4 mode is unstable. Moreover, the maximum




growth rate is increased by increasing the value of q.
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We conclude this section by emphasizing that the growth rate
exhibits a sensitive dependence on the location of the conducting
wall. This is illustrated in Fig. 4 where the normalized growth rate
Imw/wci, and the normalized Doppler-shifted real frequency Re(w+£wci)/mCi
are plotted versus R0/Rc for 2=3, nb/np=0.2, a/R0=0.05, and several
values of q. Evidently, the growth rates as well as the Doppler shifted

real frequencies are substantially reduced whenever the conducting wall

is located sufficiently close to the P-layer.




V. CONCLUSIONS

In this paper, we have investigated the electrostatic stability
properties of a rotating P-layer immersed in a uniform background
plasma. The equilibrium and stability analysis (Secs. 1I-1IV)
was carried out within the framework of a hybrid (Vlasov-fluid) model
in which the layer ions are described by the Vlasov equation, and the
layer electrons and background plasma electrons and ions are described
as a macroscopic, cold fluid. Moreover, electrostatic stability
properties were calculated for the choice of equilibrium ion distribution
function in Eq. (10). Although a slow rotational equilibrium (P0>0)
is stable [see discussion following Eq. (54)], it is found [Sec. IV]
that a high-density fast rotational equilibrium (P0<0) is unstable for
a broad range of physical parameters. One of the most important
conclusions of this study is that the background plasma has a large
influence on stability behavior. In particular, the instability growth
rate is significantly reduced for sufficiently low background plasma
density. Finally, we conclude that the growth rate increases with
increasing self-magnetic field (as measured by q). Moreover, the
characteristic growth rate for £>2 is a substantial fraction of the ion
cyclotron frequency. The fundamental mode (2=1), however, is found to

; be stable.
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FIGURE CAPTIONS

Equilibrium configuration and coordinate system.

Plots of normalized growth rate Imm/wciversus nb/np obtained from
Eq. (56) for 2=2, a/R0=0.05, RO/RC=0.5, and several values of q.
Plots of normalized growth rate Imw/mci versus £ obtained from
Eq. (56) for nb/np=0.1, a/RO=0.OS, RO/RC=0'5’ and several values
of q.

Plots of (a) normalized growth rate Imw/wci, and (b) normalized

real frequency Re(w+lwci)/wCi versus RO/RC obtained from Eq. (56)

for 2=3, nb/np=0.2, a/Ro=0.05, and several values of q.
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